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Abstract

We describe a unified view of a broad class of generalizations of Wythoff Nim. If the P -positions lie
at o(n) distance from a set of lines, then the slopes and relative densities of P -positions on those lines
are a solution to a specific set of rational equations; in particular, the lines have algebraic slope. We
compute the minimal polynomials for some cases of interest, e.g. (1, 2)GDWN. Using this idea, we prove
one direction of a conjecture of Larsson about “splitting pairs.” In the case that the P -positions are
at Ω(n) distance from lines, such as what appears to happen for (3, 5)GDWN, we give intuition for the
apparent quasiperiodicity by a connection to intransitive dice. Finally, we outline the first half of a proof
of a conjecture of Dekking, et al. about the P -positions of the greedy placement of queens in the first
quadrant of the plane.

1 Introduction

Nim is perhaps the most fundamental and well-studied combinatorial game. The rules are simple: at any
stage of the game there are some number of stones arranged in piles, a move is to remove any number of
stones from a single pile, and the winner is the player that removes the last stone. The game where all the
piles have no stones is understood to be a second-player win. It is well-known that the game is a second-
player win if and only if the so-called nim-sum of the number of stones in the piles is 0. This nim-sum is
the bitwise xor operation. In the case of 2-pile Nim, this means the game is a second-player win if and only
if the piles start with an equal number of stones; in that case, the optimal play for the second player is to
equalize the number of stones in the two piles (i.e. copy the first player’s move on the opposite pile). In
general, a position in an impartial game such as Nim is called a P -position if it is a win for the second player
and an N -position if it is a win for the first player (“P” stands for “previous player” and “N” stands for
“next player”). The set of P -positions for a game is denoted P and the set of N-positions is denoted N .

Wythoff Nim, first defined in [Wyt07], is a classic variant of 2-pile Nim where, in addition to the ability
to take any number of stones from a single pile, one may also take an equal number of stones from both
piles. This drastically changes the set of P -positions. This is intuitive: all of the old P -positions are now
instantaneous wins for the first player. Wythoff proved that the P -positions in fact lie nearly exactly on two
lines; namely the P -positions are

(⌊ϕn⌋, ⌊ϕ2n⌋) and (⌊ϕ2n⌋, ⌊ϕn⌋)

for each n ≥ 0, where ϕ = 1+
√
5

2 is the golden ratio, and (x, y) means the first pile has x stones and the
second has y stones. Wythoff’s proof of this essentially relies on the famous property of complementary
Beatty sequences, which is that if 1/a+ 1/b = 1 with a, b positive irrational numbers, then the sequences

(⌊an⌋)∞n=1 and (⌊bn⌋)∞n=1

form a partition of the positive integers. Alternative proofs may be obtained by properties of the Fibonacci
word, which is defined by repeatedly applying the string substitution 0 → 1 and 1 → 10 to the word. The
interpretation of this word is that the 0’s correspond to a P -position on the lower line and the 1’s correspond
to a P -position on the upper line, where the P -positions are read from left to right.

Many variants of Wythoff Nim have been studied; see [Duc+17]. In some cases, Beatty sequences or more
complicated string substitutions can be used to analyze the asymptotic P -position placement in variants, but
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general analysis is difficult. In this paper we concern ourselves foremost with Generalized Diagonal Wythoff
Nims (GDWNs), introduced by Larsson in [Lar12]. Larsson defines

{(p1, q1), (p2, q2), . . . }GDWN

to be the 2-pile Nim variant where the allowed moves are to remove any number of stones from a single pile,
an equal number of stones from both piles, or pin stones from one pile and qin notes from the other pile,
for some i, n ≥ 1. Often braces and commas are omitted, e.g. (1, 2)(2, 3)GDWN is {(1, 2), (2, 3)}GDWN. In
fact we consider a more general form. We define

{(p1, q1), (p2, q2), . . . }GDNk

to be the 2-pile Nim variant where the allowed moves are to remove any number of stones from a single
pile, kn stones from both piles where n ≥ 1, or pin stones from the first pile and qin stones from the
second pile, for some i, n ≥ 1. If k is omitted it is understood to equal 1, and as before one may omit the
braces and commas. Note that in these variants the moves are no longer symmetrical between the piles in
general, e.g. (1, 2)GDN is different than (1, 2)(2, 1)GDN. The reason to require that some move of the form
(k, k) is allowed is because otherwise it is easily shown that the P -positions are the same as in Nim, namely
{(n, n)}∞n=0. We describe this argument in Section 2. Also, we can allow the q’s to be negative, with the
interpretation being that a move of that form adds stones to the second pile. Since the number of stones in
the first pile either decreases or stays the same, and in the event it stays the same the number of stones in
the second pile decreases, the game will still always end in finitely many moves.

Intuitively, if b/a is approximately ϕ, then (a, b)GDN (or indeed (a, b)GDWN) should have substantially
different P -positions than Wythoff Nim. More precisely, Larsson defines (p, q) to be a splitting pair if either
(p, q) or (p− 1, q − 1) is a P -position of Wythoff Nim other than (0, 0). He makes the following conjecture:

Conjecture 1. Let {(an, bn)}∞n=1 be the subset of P -positions of (p, q)GDWN such that a1 ≤ a2 ≤ . . . and
bn < an for all n. Then limn→∞

bn
an

= ϕ if and only if (p, q) is not a splitting pair.

Larsson proved the “if” direction when p < q < ϕp and the “only if” direction for the specific cases
(p, q) = (1, 2) and (p, q) = (2, 3) in [Lar12]. We prove this conjecture for all splitting pairs (i.e. the entirety
of the “only if” direction), leaving open only the case when q > ϕp and (p, q) is not a splitting pair. In fact
we prove something stronger in Section 3, namely:

Theorem 1. Under a suitable assumption (that is known to be satisfied for Wythoff Nim),

(1) There is a finite set S of real numbers such that if P are the P -positions of DGDNk then the function
E given by E(a) = mins∈S{|b− sa|} is o(a) for almost all (a, b) ∈ P.

(2) There is a set of real numbers ∆ = {δs}s∈S such that the proportion of P -positions satisfying |b−sa| ≤
E(a) for a particular s approaches δs as a→ ∞.

(3) There is a set D ⊆ D ∪ {(0, 1), (1, 0), (k, k)} with |D| = |S|+ 1 such that for all (c, d) ∈ D,∑
s∈S

s>d/c

δs
cs− d

= 1 and
∑
s∈S

s<d/c

δs
d− cs

= 1

with 1/0 = ∞, except for (c, d) = (0, 1) or (1, 0) where one of the above equalities holds and the other
sum is empty. Furthermore one may order the S as s1, s2, . . . so that if D is ordered (c1, d1), (c2, d2), . . .
so that (c, d) comes before (c′, d′) whenever d/c < d′/c′ (with 1/0 = ∞) then

0 =
d1
c1

< s1 <
d2
c2

< s2 < · · · < s|S| <
d|D|

c|D|
= ∞.
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(4) If either ∑
s∈S

s<q/p

δs
q − ps

> 1 or
∑
s∈S

s>q/p

δs
ps− q

> 1

then whenever (p, q) ∈ E, the function given by mins∈S{|b − sa|} is not o(n), where {(a, b)} are the
P -positions of (D ∪ E)GDNk.

See Section 3 for the details of the assumption. The set S in the theorem above is called the set of slopes,
∆ the set of densities, and D the set of dominant vectors. A (p, q) satisfying either inequality in part (4) is
called a splitting vector.

We further conjecture:

Conjecture 2. Under the assumptions of Theorem 1, if∑
s∈S

s<q/p

δs
q − ps

≤ 1 and
∑
s∈S

s>q/p

δs
ps− q

≤ 1,

then (D ∪ {(p, q)})GDNk also satisfies the assumptions of Theorem 1 and the set of slopes, densities, and
dominant vectors is the same as in DGDNk.

This would imply the “if” direction of Conjecture 1.
This paper is organized as follows. In Section 2 we describe a simple (though slow) algorithm to com-

pute the P -positions in variants of Nim. This shows some basic properties of the P -position placement. In
Section 3 we prove Theorem 1 then perform many computations using parts (3) and (4) and some gener-
alizations of them. In Section 4 we provide some intuition for the behavior of GDNs that do not satisfy
the assumptions of Theorem 1, though there are no proofs. There appears to be a connection to a suitably
generalized version of intransitive dice. Finally, in Section 5, we outline a proof of a conjecture in [DSS19]
that the P -positions of (1,−1)GDN lie at bounded distance from the lines of slopes ϕ and 1/ϕ through the
origin.

2 Computing P-Positions with Fairy Chess Pieces

How do you determine the P -positions of a given GDN? Since the position always decreases lexicographically
over the course of a game, we will consider the possible positions in lexicographically-increasing order, starting
from (0, 0) (which is a P -position). Note that a position is an N -position if and only if there is a legal move
to a P -position, and it is a P -position if and only if all legal moves go to N -positions (including vacuously
the case where there are no legal moves). This remark gives an algorithm for determining the P -positions:

(1) Place a fairy at (0, 0).

(2) In lexicographically-increasing order (i.e. upwards along columns), if a position is not “seen” by any
previously placed fairy, place a fairy at that position.

(3) The P -positions are precisely the positions of the fairies.

Here, “fairy” refers to a generalized chess piece depending on the variant. For regular Nim, the fairies are
rooks. For Wythoff Nim, they are rooks that can also move along diagonals (but not antidiagonals), a sort of
“one-eyed queen.” For (1,−1)GDN, they are queens. This variant is of interest for precisely this reason; the
P -positions of (1,−1)GDN are known as the “greedy queens” sequence [DSS19]. For (1, 2)GDWN, they are
(one-eyed) “amazonriders.” And so on. The name “fairy” is coming from “fairy chess,” which are variants of
chess with different rules, particularly the introduction of “fairy chess pieces,” pieces with different movement
from the pieces in standard chess.

From this algorithm, it is clear that the P -positions of a variant of Nim are (n, n) for all n ≥ 0 if and only
if no move of the form (a, a) is allowed. This is the reason for appending the move (1, 1) in the definition of
GDWN and (k, k) in GDNk. More generally, if one adds a move (a, b) to a variant of Nim, the P -positions
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do not change if and only if no two P -positions differed by (a, b). This was the key behind the proof in
[Lar12] of the “if” direction of Conjecture 1 in the case p < q < ϕp.

It is also the case that every row and column will contain a P -position in any GDN. For columns this is
immediate. For rows, notice that for large enough x, all points (x, n) for fixed n will see no fairies, at least
in the case that no legal move increases the y-coordinate, i.e. none of the q’s are negative. This is still true
in the case when there are moves that increase the y-coordinate, and we invite the reader to ponder.

Also, if no legal move increases the y-coordinate then not only is the position decreasing lexicographically,
but it is in fact decreasing under the L1 norm. Hence in that case you can modify the algorithm by considering
the squares going down along antidiagonals rather than up along columns and you will get the same result.
In fact, as long as you consider the squares along sufficiently steep antidiagonals, you will get the same
result as considering them going up columns; this corresponds to considering the states in increasing order
according to the norm ∥(x, y)∥c = c|x|+ |y| for some c. In a way, going “up columns” is the same as “down
infinitely steep diagonals,” as the lexicographical ordering is obtained by taking c→ ∞.

Finally, if you forget about Nim and just deal with fairies to begin with, you can define further variants
on other spaces or orderings. For instance, in Z2, place pieces starting at the origin and moving outwards in
a square spiral; in {(x, y) ∈ N2 | x ≥ y}, place pieces upwards on columns; in N2, place pieces alternatively
going up and down antidiagonals (boustrophedon); and so on. Many of the results and conjectures have
obvious extensions for these other ordered spaces. In Section 3.2.4 we consider the queens on a square spiral
in Z2, and we invite the reader to further generalize. There are ways to obtain Nim variants for these more
exotic variants by just adding the rule that the state must decrease under the chosen ordering so that the
game always ends, but this does not seem to be a particularly useful way to view these variants.

3 A Heuristic for Slopes of Lines

3.1 Proof of Theorem 1

We must introduce some notation. Write D̃ = D ∪ {(0, 1), (1, 0), (k, k)}. For (c, d) ∈ D̃, j ∈ Z, and
p ∈ {0, . . . , c− 1}, define ℓ(c, d, j, p) as

ℓ(c, d, j, p) =

{
{(nc+ p, nd+ j) | n ∈ Z} (c, d) ̸= (0, 1)

{(j, n) | n ∈ Z} (c, d) = (0, 1)
.

In the case (c, d) = (0, 1) we suppress p and just write ℓ(0, 1, j). Let H(c, d, j, p) be the column that contains
the P -position in ℓ(c, d, j, p) (by assumption there is at most one P -position in each ℓ(c, d, j, p)) or ∞ if there
is no P -position in ℓ(c, d, j, p).

Call (c, d) ∈ D̃ nice if either:

• There are constants α and β such that

H(c, d, j, p) = αj + o(j)

for negative j and
H(c, d, j, p) = βj + o(j)

for positive j. In the case (c, d) = (0, 1) or (1, 0) we only require β to exist since all P -positions are in
the first quadrant.

• Otherwise, a positive fraction of ℓ(c, d, j, p) do not contain a P -position, taking this fraction as |j| → ∞.

The (c, d) of the first type will end up constituting the D claimed in part (3). Call DGDNk nice if all
(c, d) ∈ D̃ are nice.

The main intuition behind the first half of this theorem is that, if DGDNk is nice, then after placing the
first n P -positions there is a “block” of lines of slope d/c such that all lines in this block have one P -position,
and this block grows linearly in n. Then the next few P -positions will occur both outside of these blocks and
as far down as possible, which is near the vertex of a wedge in the plane formed by the space in-between the
blocks. This vertex moves along a line as the blocks grow. The block growth rate, and therefore the slope of
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Figure 1: Intuition for Theorem 1. The blocks are regions where there cannot be any P -positions due to a
single (c, d) ∈ D̃. They grow linearly, pushing the vertex along a line. In general there will be more blocks.
The P -positions are always placed near a vertex between two blocks, so they should lie near some set of
lines. The angle of the blocks relative to the horizontal is determined by d/c, so combined with the growth
rates of the blocks, this determines the density and slope of each line.

the line this vertex moves along, is determined by the α and β values, and this is quantified in the system
of equations in part (3). See Figure 1.

We note the following fact about nice games. Define L(α, β) as

L(α, β) =


{{(x+ nc, y + nd) | n ∈ Z} | 0 ≤ x < nc, α ≤ y ≤ β} (c, d) ̸∈ {(0, 1), (1, 0)}
{{(n, y) | n ∈ Z} | α ≤ y ≤ β} (c, d) = (1, 0)

{{(−x, n) | n ∈ Z} | α ≤ x ≤ β} (c, d) = (0, 1).

Let P(n) = P ∩ ([0, n]× [0,∞)). Then the condition that (c, d) ∈ D̃ is nice implies the existence of dα(c, d)
and dβ(c, d) such that dα(c, d) ≤ 0 ≤ dβ(c, d) and

|L(dα(c, d)n, dβ(c, d)n) ∩ P(n)| = c(dβ(c, d)− dα(c, d))n+ o(n)

but for all d′α, d
′
β such that either d′α = dα(c, d) and d

′
β > dβ(c, d) or d

′
β = dβ(c, d) and d

′
α < dα(c, d), there

is an ε > 0 such that
|L(d′αn, d′βn) ∩ P(n)| ≤ (1− ε)c(d′β − d′α)n+ o(n)

for all n. This is what we will use to prove Theorem 1. In the case of nice (c, d) of the second type,
dα = dβ = 0.

Note that Wythoff Nim is nice, which follows quickly from the closed form expression for the P -positions.
In fact in basically every known variant that has a proof of some asymptotic behavior of P -positions is nice
by virtue of that proof itself.

We now present the proof of Theorem 1, though we are slightly informal in places.

Proof of Theorem 1. Consider first the niceness of (1, 0). Obviously dα(1, 0) = 0. For notational simplicity
set dβ = dβ(1, 0). Niceness tells us that the (dβn)th row (rounded down, say) above the x-axis must contain
a P -position no later than column n+ o(n), so the P -positions are almost all bounded below by the line of
slope dβ through the origin. At the same time, niceness tells us that for any d′β > dβ , a positive fraction of
rows between dβn and d′βn above the x-axis do not have P -position earlier than column n + o(n), so there
must be a P -position with y-coordinate between dβn and d′βn and x-coordinate at least n + o(n), for any
d′β > dβ and n ≥ 0. Combined with the lower bound, this implies that a positive fraction r1,0 of P -positions
must lie at o(n) distance from the line of slope dβ through the origin, and for any d′β > dβ but sufficiently
close to dβ , there are almost no P -positions at o(n) distance from the line of slope d′β through the origin.
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Consider the next smallest (c, d) ∈ D̃, ordered by the value of d/c, such that the associated dβ(c, d) is
nonzero. First witness that dα(c, d) = dβ(1, 0) − d/c. Indeed, almost no P -positions lie below the line of
slope dβ(1, 0), so for d′α < dβ(1, 0)− d/c and d′β = dβ(c, d) the second condition for niceness will be satisfied.
This implies dα(c, d) ≥ dβ(1, 0)− d/c. The fact that there are almost no P -positions at o(n) distance from
the line of slope dβ(1, 0) + ε for sufficiently small ε implies that dα(c, d) ≤ dβ(1, 0)− d/c.

Now niceness tells us that the lines {(x + nc, ⌊dβ(c, d)n⌋ + nd) | n ∈ Z} for 0 ≤ x < c each have a P -
position no later than column n+ o(n). This means other than the fraction r of P -positions at o(n) distance
from the line of slope dβ(1, 0), almost all P -positions lie above the line of the slope dβ(c, d) + d/c. Similarly
to the case of rows, niceness also tells us that for any d′β > dβ(c, d) there must be a P -position on one of the
lines {(x+nc, y+nd) | n ∈ Z} with dβ(c, d)n ≤ y ≤ d′βn, such that the P -position has x-coordinate n+o(n).
Thus a positive fraction rc,d of P -positions must lie at o(n) distance from the line of slope dβ(c, d) + d/c.

This argument continues for all such (c, d) ∈ D̃ with dα(c, d) and dβ(c, d) not both zero, until (c, d) =
(0, 1). We omit the details. Let (c∗, d∗) be the last such (c, d) before (0, 1). Then we find by the fact that
fairy pieces are placed as low as possible that almost no P -positions lie Ω(n) distance above the line of slope
dβ(c

∗, d∗). Also note dα(0, 1) = −1 and dβ(0, 1) = 0.

Now we prove the specific claims of the theorem:

(1) The set S is {dβ(c, d) + d/c | (c, d) ∈ D̃ such that dβ(c, d) ̸= 0}, as we have seen.

(2) Define Ps(N) to be the number of P -positions distance o(n) from the line of slope s. We have seen
limN→∞ Ps(N)/N = rc,d where s = dβ(c, d) + d/c, and δs is also the value of this limit.

(3) The set is D = {(c, d) ∈ D̃ | dβ(c, d) ̸= 0} ∪ {(0, 1)}. The inequality chain

0 =
d1
c1

< s1 <
d2
c2

< s2 < · · · < s|S| <
d|D|

c|D|
= ∞.

is clear.

Consider (c, d) ∈ D other than (0, 1). Almost all lines of the form {(x + nc, y + nd) | n ∈ Z} have a
P -position (except in the case (c, d) = (1, 0) with y < 0, where none do). Let P ′ = {(x, y − ⌊xd/c⌋) |
(x, y) ∈ P}. Let s∗ be the smallest element of S that is greater than d/c. We will compute the size of
X(N) = P ′ ∩ [0, N ]× [0, (s∗ − d/c)N ] in two ways.

First, there one P -position on almost all sets of the form {(x+ nc, y + nd) | n ∈ Z}, as we mentioned.
Thus there are ⌊c(s∗ − d/c)N⌋ elements of X(N) up to an o(N) term, since those sets are sheared
to now be the sets {(x + nc, y − ⌊xd/c⌋) | n ∈ Z} and there are ⌊c(s∗ − d/c)N⌋ such sets covering
([0, N ]× [0, (s∗−d/c)N ])∩Z2. Second, X(N) contains almost all of the P -positions (x, y) with dy > cx
and x ≤ N , so since Ps(N)/N → δs for all s, we have

|X(N)| =
∑
s∈S

s>d/c

s∗ − d/c

s− d/c
δsN + o(N).

This is just geometry. Consider Figure 2 depicting X(N), where S ∩ (d/c,∞) = {s∗, s1, s2, s3} with
s∗ < s1 < s2 < s3 for example.

Note that after shearing the P -positions to obtain X(N), the slopes of the diagonal lines are not
s∗, s1, s2, s3 but s∗ − d/c, etc. Up to o(N), the number of P -positions inside the rectangle is δs∗N +
s∗−d/c
s1−d/cN . . . as desired.
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0 Ns∗−d/c
s1−d/cN

s∗−d/c
s2−d/cN

s∗−d/c
s3−d/cN

Figure 2: Geometric argument for parts (3) and (4) of Theorem 1. This depicts the rectangular region
containing X(N). The P -positions essentially lie on the lines of slopes s∗, s1, s2, s3 with constant density, so
we can compute the number of P -positions in X(N) by finding the size of the line segments in this rectangle.

Therefore∑
s∈S

s>d/c

s∗ − d/c

s− d/c
δsN + o(N) = ⌊c(s∗ − d/c)N⌋+ o(N)

= c(s∗ − d/c)N + o(N)∑
s∈S

s>d/c

δs
cs− d

= 1 (divide by c(s∗ − d/c)N and take N → ∞).

A similar calculation for the size of P ′ ∩ [0, N ] × [0, (−s∗ + d/c)N ] where s∗ is the largest element of
S less than d/c gives ∑

s∈S
s<d/c

δs
d− cs

= 1

except for (c, d) = (1, 0) where this sum is empty.

For (c, d) = (1, 0),
∑

s∈S δs = 1 since almost all P -positions lie o(N) distance from the lines with slopes
in S. The other sum is

∑
s∈S

s>1/0
δs, which is empty.

(4) We use a similar geometric argument to the previous part. Let P ′ = {(x, y − ⌊xq/p⌋) | (x, y) ∈ P}.
We just prove the ∑

s∈S
s>q/p

δs
ps− q

> 1

case by considering X(N) = P ′ ∩ [0, N ] × [0, (s∗ − q/p)N ] with s∗ the smallest element of S greater
than q/p; the other is essentially the same by looking at P ′ ∩ ([0, N ]× [0, (−s∗ + q/p)N ]) with s∗ the
largest element of S less than q/p. Note that in (D ∪ E)GDNk where (p, q) ∈ E that each line of the
form {(x + np, y + nq) | n ∈ Z} has at most one P -position. After shearing, this means there are at
most ⌊p(s∗ − q/p)N⌋ elements of X(N). Thus after considering Figure 2 once more, if the P -positions
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of (D ∪ E)GDNk were o(n) from lines with slopes in S, we would have∑
s∈S

s>q/p

s∗ − q/p

s− q/p
δsN + o(N) ≤ ⌊p(s∗ − q/p)N⌋

≤ p(s∗ − q/p)N∑
s∈S

s>q/p

δs
ps− q

≤ 1,

contradicting that
∑

s∈S
s>q/p

δs
ps−q > 1. There is a small wrinkle since it could be the case that (D ∪

E)GDNk is not nice but still has all P -positions o(n) from lines with slopes in S, so long as there are
exponentially-growing regions of high and low density along these lines (see Figure 5 for something
similar to this phenomenon). But in that case one simply needs to consider the lim sup of |X(N)|,
which must still be at least

∑
s∈S

s>q/p

s∗−q/p
s−q/p δsN + o(N).

We remark that if niceness is replaced by the same condition but with O(1) instead of o(n), an identical
proof replacing o(n) (or o(N)) with O(1) everywhere shows that the P -positions are at a bounded distance
from a set of lines. Call a game cordial if it satisfies this stronger form of niceness. Of course Wythoff Nim
is cordial. With some careful work we expect one can obtain a specific bound on the distance of P -positions
from the lines in terms of the constant appearing in the cordiality condition, but we have not checked this
carefully. Empirically it seems that (1, 2)GDWN is nice but not cordial. It seems as well that Conjecture 2
does not hold if one replaces niceness with cordiality; in general appending (p, q) to D may downgrade cordial
games to nice ones.

Additionally, this theorem holds not just for nice GDNs but in fact for an even broader class of nice
variants of Wythoff Nim. For instance, define DGDNk + J , with J a finite set of vectors, to be DGDNk

where additionally one may take j1 stones from the first pile and j2 stones from the second pile with
(j1, j2) ∈ J , and k is now allowed to be infinite (so no move of the form (k, k) is allowed unless that is an
element of J ). This is an extremely broad class of variants, containing Maharaja Nim [LW12], Ryūō Nim
[Miy+17], WytK [Duc+09] where K is finite, and so on. If one proves that their variant of interest is nice
(or cordial), they immediately know the asymptotic behavior of the P -positions. Furthermore, they know
many (p, q) such that appending (p, q) to D changes the asymptotic behavior of the P -positions (and, if
Conjecture 2 holds, all such (p, q)). For these variants we make the additional conjecture:

Conjecture 3. If DGDNk +J is nice (cordial) for any finite J then DGDNk +J ′ is nice (cordial) for all
finite sets J ′.

Combined with Theorem 1, this is a vast generalization of Conjecture 4.1 in [LW12] that (in our notation)
the P -positions of ∅GDN1 + {(j, ℓ), (ℓ, j)} are bounded distance from the lines of slope ϕ and 1/ϕ, for any
j, ℓ. It is not hard to imagine further generalizations, say to when J is infinite but extremely sparse.

3.2 Computing Specific Slopes

The system of rational equations in part (3) of Theorem 1 implies that for nice DGDNk, the P -positions
lie essentially on some lines whose slopes are algebraic. Note that for most cases of interest it is not known
whether or not DGDNk is nice, and we make no attempt to prove this for any specific cases aside from
(1,−1)GDN in Section 5. The system from (3) can be solved, in the sense of finding minimal polynomials
for these algebraic slopes, by multiplying to clear denominators and finding a Gröbner basis of the resulting
system of multivariate polynomials. Before introducing that complexity, we will compute some easy cases
by hand.
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3.2.1 Wythoff Nim and GDNk

We begin with Wythoff Nim. Then D = {(0, 1), (1, 0), (1, 1)}, so S = {s1, s2} with s1 < 1 < s2. We have
the system

1 = δ1 + δ2

1 =
δ1
s1

+
δ2
s2

1 =
δ1

1− s1

1 =
δ2

s2 − 1

where δi := δsi . Solve the last two equations for δ1 and δ2 and plug into the first two equations. We get

1 = 1− s1 + s2 − 1

1 =
1− s1
s1

+
s2 − 1

s2
.

From the first equation get s2 − 1 = s1; the second equation becomes

1 =
1− s1
s1

+
s1

s1 + 1

s21 + s1 = 1− s21 + s21

s1 = 1/ϕ

so s2 = 1 + 1/ϕ = ϕ, as expected.
Now consider GDNk for arbitrary k ≥ 1. Then (it appears) D = {(0, 1), (1, 0), (k, k)}, so S = {s1, s2}

with s1 < 1 < s2 once again. We have the system

1 = δ1 + δ2

1 =
δ1
s1

+
δ2
s2

1 =
δ1

k − ks1

1 =
δ2

ks2 − k
.

Repeating the same steps as for Wythoff Nim, we get

ks21 + s1 − k = 0

i.e. s1 = −1+
√
1+4k2

2k . Then s2 = 1+
√
1+4k2

2k . In [DG09], after translating to our notation, it is conjectured

that the P -positions of GDN2 with y > x have x a bounded distance from
⌊
n(3+

√
17)

4

⌋
for some n (depending

on x). This is basically the statement 1/δ2 = 3+
√
17

2 , so to prove this conjecture it suffices to prove GDN2

is cordial. Well, the conjecture may be obtained as a combination of results in [DG09] and [LW12], with no
need to invoke Theorem 1:

Theorem 2. The nth leftmost P -position (x, y) of GDN2 with y > x has x a bounded distance from⌊
n(3+

√
17)

4

⌋
.

Proof. In [DG09] it is shown in the proof of Proposition 15 that if (xn, yn) are the P -positions of GDN2 with
xn increasing and yn ≥ xn with the sole exception (x3, y3) = (3, 2), then

y4t − x4t = 2t

y4t+1 − x4t+1 = 2t

y4t+2 − x4t+2 = 2t+ 1

y4t+3 − x4t+3 = 2t− 1.

9



Furthermore, the sequences X = 1, 2, x4, x5, x6, . . . and Y = 2, 3, y4, y5, y6, . . . are complementary by defini-
tion of the sequences Pn and Qn in [DG09], and they satisfy Yn −Xn = n/2 +O(1) by the above, and X is
increasing, so by the Central Lemma (Lemma 1.4) of [LW12], there are α and β such that Xn − αn = O(1)
and Yn − αn = O(1). This is sufficient to prove the conjecture about the asymptotic P -positions of GDN2

since δ(1− α) + α = (α− 1)α ((10) in [LW12]) implies α = 3+
√
17

4 as desired.

Do note that the proof above suffices as a proof of cordiality of GDN2, so we can discover the splitting
vectors using part (4) of Theorem 1, for instance.

3.2.2 GDWNs and (1, 2)GDN

Once more variables are introduced the complexity of solving this system grows dramatically. In the case of
(1, 2)GDWN, which perhaps the next simplest symmetrical case, it is conjectured that the game is nice and

D = {(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)}.

Then the system is

1 = δ1 + δ2 + δ3 + δ4

1 =
δ1
s1

+
δ2
s2

+
δ3
s3

+
δ4
s4

1 =
δ1

1− 2s1

1 =
δ2

2s2 − 1
+

δ3
2s3 − 1

+
δ4

2s4 − 1

1 =
δ1

1− s1
+

δ2
1− s2

1 =
δ3

s3 − 1
+

δ4
s4 − 1

1 =
δ1

2− s1
+

δ2
2− s2

+
δ3

2− s3

1 =
δ4

s4 − 2
.

Find δ1 = 1− 2s1, δ2 = s1(1−s2)
1−s1

, δ4 = s4− 2, δ3 = s3−1
s4−1 using the 3rd, 5th, 6th, and 8th equations. Plugging

into the remaining equations gives

1 = 1− 2s1 +
s1(1− s2)

1− s1
+
s3 − 1

s4 − 1
+ s4 − 2

1 =
1− 2s1
s1

+
s1(1− s2)

s2(1− s1)
+

s3 − 1

s3(s4 − 1)
+
s4 − 2

s4

1 =
s1(1− s2)

(2s2 − 1)(1− s1)
+

s3 − 1

(2s3 − 1)(s4 − 1)
+

s4 − 2

2s4 − 1

1 =
1− 2s1
2− s1

+
s1(1− s2)

(2− s2)(1− s1)
+

s3 − 1

(2− s3)(s4 − 1)
.
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Clearing denominators and expanding everything gives

0 = 2s21s4 − 2s21 − s1s2s4 + s1s2 − s1s3 − s1s
2
4 + 2s1s4 + s3 + s24 − 3s4 + 1

0 = s21s2s3s
2
4 − 2s21s2s3 + s21s2s4 + s21s3s

2
4 − s21s3s4 − 3s1s2s3s

2
4 + 2s1s2s3s4 + 2s1s2s3 − s1s2s4 + s2s3s

2
4

− s2s3s4

0 = 2s1s2s3s4 − 4s1s2s3 + s1s2s4 + s1s2 + 2s1s3s
2
4 − 4s1s3s4 + 3s1s3 − s1s

2
4 + s1s4 − s1 − 4s2s3s

2
4

+ 4s2s3s4 + 2s2s3 + 2s2s
2
4 − 4s2s4 + 2s3s

2
4 − 2s3s4 − s3 − s24 + 2s4

0 = −s21s2s3 + s21s2 − s21s3s4 + 3s21s3 + 2s21s4 − 4s21 + 2s1s2s3s4 + s1s2s3 − 4s1s2s4 + s1s2 − 2s1s3s4

− 4s1s3 + 4s1s4 + 2s1 − s2s3s4 − s2s3 + 2s2s4 + 2s3s4 + 2s3 − 4s4.

In principle one can now use Gröbner bases to find minimal polynomials for si, but this is computationally
difficult, so we do some more simplification. We can “cheat” a bit by noting that the set of P -positions is
symmetric across y = x, so s4 = 1/s1 and s3 = 1/s2. In fact, with these substitutions, the first equation and
second equation become the same, and the third equation becomes 1/s1 times the fourth equation. We have

0 = −2s41s2 + s31s
2
2 + 2s31s2 − s31 − s21s

2
2 + 3s21s2 + s21 − 4s1s2 + s2

0 = s31s
2
2 − 5s31s2 + 3s31 + s21s

2
2 + 5s21s2 − 5s21 − 4s1s

2
2 + 5s1s2 + 2s22 − 5s2 + 2.

Both of these have a factor of 1− s1. Dividing this out, we have

0 = 2s31s2 − s21s
2
2 + s21 − 3s1s2 + s2

0 = −s21s22 + 5s21s2 − 3s21 − 2s1s
2
2 + 2s1 + 2s22 − 5s2 + 2.

A CAS will now happily spit out the Gröbner basis

{71766s1 + 498080s92 − 2036496s82 + 4371580s72 − 14079408s62 + 24172278s52

− 7663985s42 − 24413440s32 + 25315751s22 − 4628498s2 − 1607628,

4s102 − 20s92 + 50s82 − 145s72 + 297s62 − 238s52 − 141s42 + 383s32 − 222s22 + 20s2 + 12}.

The latter element factors as

(s2 − 1) (s2 + 1)
(
4s82 − 20s72 + 54s62 − 165s52 + 351s42 − 403s32 + 210s22 − 20s2 − 12

)
,

so the minimal polynomial of s2 is

4x8 − 20x7 + 54x6 − 165x5 + 351x4 − 403x3 + 210x2 − 20x− 12,

so s2 and s3 = 1/s2 have approximate values

s2 ≈ 0.676681656,

s3 ≈ 1.477799775.

Using the minimal polynomial for s2 and one of the polynomial equations in s1 and s2 we can find (with the
help of a CAS) the minimal polynomial for s1, which turns out to be

12x8 + 20x7 − 25x6 − 56x5 + 24x4 + 64x3 − 12x2 − 16x+ 4,

so s1 and s4 = 1/s1 have approximate values

s1 ≈ 0.444894166,

s4 ≈ 2.247725583.

In [Lar12] the slopes of the top two lines (i.e. s3 and s4) are estimated to be 1.478 . . . and 2.247 . . . ,
so the constants we obtain match experiment. Again, proving that (1, 2)GDWN is nice is left open. The
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work in [Lar14], where essentially the conclusion of part (4) of Theorem 1 is proven for (1, 2)GDWN (i.e.
k = 1, D = ∅, E = {(1, 2), (2, 1)}) using different techniques, unfortunately does not appear to show that
(1, 2)GDWN is nice.

With significant computational effort one can repeat this process for (a, b)GDWN and find s2 is a root of

x8
(
2a4b2 + 2a3b3 − 5a3b2 − a2b3 + 2a2b2

)
+ x7

(
−2a4b2 − 2a4b− 4a3b3 + 2a3b2 + 3a3b− 2a2b4 + 8a2b3 − 4a2b2 − a2b− ab3 + ab2

)
+ x6

(
2a5b− 4a4b2 − 2a3b3 + 24a3b2 + 4a3b+ 4a2b4 − 2a2b3 − 14a2b2 − a2b− 2ab4 + 2ab3 + ab2

)
+ x5

(
−2a5b− 6a4b2 − 4a4b− a4 − 4a3b2 − 5a3b+ 2a2b4 − 30a2b3 + 10a2b2 + 3a2b− 2ab5 + 6ab4

+7ab3 − 3ab2 − b4
)

+ x4
(
2a5b+ a5 + 18a4b2 + a4b+ 20a3b3 − 16a3b2 − 6a3b+ 6a2b4 − 4a2b3 + 16a2b2 + 2a2b+ 2ab5

+3ab4 − 2ab3 − 2ab2 − b5
)

+ x3
(
−2a5b− 10a4b2 + 2a4b+ a4 − 24a3b3 + 10a3b2 + 3a3b− 18a2b4 + 28a2b3 − 10a2b2 − 3a2b

−2ab5 − 9ab3 + 3ab2 + b4
)

+ x2
(
−2a4b+ 6a3b3 + 2a3b2 + 2a3b+ 8a2b4 − 4a2b3 − 2a2b2 − a2b+ 2ab5 + ab2

)
+ x

(
2a4b2 + 4a3b3 − 4a3b2 − a3b+ 2a2b4 − 10a2b3 + 4a2b2 + a2b− 2ab4 + 3ab3 − ab2

)
+
(
−2a3b3 + a3b2 − 2a2b4 + 5a2b3 − 2a2b2

)
.

The other element of the Gröbner basis is of the form p1(a, b, s2)s1+p2(a, b, s2) for some polynomials p1 and
p2. If written out in full it is tens of thousands of characters long, so we omit it. But in principle one could
use this to find a minimal polynomial s1 as well, or one could find an alternative Gröbner basis which spits
out the minimal polynomial of s1 immediately. Note that since s1 is in Q[s2], it is degree 8 at most.

Let us compute one asymmetrical game, (1, 2)GDN. The P -positions are shown in Figure 3.

Figure 3: (1, 2)GDN. On the left are the first 100000 P -positions. On the right, we plot y/x against x so
the rapid convergence towards three lines of slopes approximately 0.61, 1.47, and 2.23 is clear.
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The system is

1 = δ1 + δ2 + δ3

1 =
δ1
s1

+
δ2
s2

+
δ3
s3

1 =
δ1

1− s1

1 =
δ2

s2 − 1
+

δ3
s3 − 1

1 =
δ1

2− s1
+

δ2
2− s2

1 =
δ3

s3 − 2

so δ1 = 1− s1, δ3 = s3 − 2, δ2 = s1 − s3 + 2, leaving us with

1 =
1− s1
s1

+
s1 − s3 + 2

s2
+
s3 − 2

s3

1 =
s1 − s3 + 2

s2 − 1
+
s3 − 2

s3 − 1

1 =
1− s1
2− s1

+
s1 − s3 + 2

2− s2

Clearing denominators gives

0 = s21s3 − s1s
2
3 − s1s2s3 + s2s3 + 2s1s3 − 2s1s2

0 = s1s3 − s23 − s1 − s2 + 3s3 − 1

0 = s1s3 − s21 + s2 − 2s3 + 2

A Gröbner basis is

{8s1 + s53 − 2s43 + s33 − 7s3 − 6,

8s2 − 3s53 + 6s43 + 5s33 − 27s3 + 10,

s63 − 3s43 − 6s33 + s23 + 4s3 + 4},

so the minimal polynomial of s1, s2, s3 are

x6 + 3x5 − 3x4 − 12x3 + 10x2 − 8x+ 4,

x6 + 3x5 − 3x4 − 20x3 + 28x2 − 12x+ 4,

x6 − 3x4 − 6x3 + x2 + 4x+ 4,

respectively, and they have approximate values

s1 ≈ 0.610722699,

s2 ≈ 1.469343290,

s3 ≈ 2.228756687,

matching experiment.

3.2.3 Side Note: Detecting Nondominant Vectors Using the Rational System

One can compute that (1, 3) is not a splitting vector of Wythoff Nim, so (1, 3)GDWN should have the
same asymptotic behavior of P -positions as Wythoff Nim according to Conjecture 2. But what happens to
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the computation of S and ∆ if one does not check this and thinks that (1, 3) and (3, 1) are dominant in
(1, 3)GDWN? One will find the minimal polynomial of s2 is

9x8 − 54x7 + 93x6 − 296x5 + 746x4 − 1030x3 + 597x2 − 36x− 45

and the minimal polynomial of s1 is

45x8 + 66x7 − 55x6 − 162x5 + 84x4 + 270x3 − 27x2 − 54x+ 9.

But then the approximate value of s1 is 0.3846 . . . , contradicting that s1 < 1/3. In particular, this makes δ1
negative! So one will detect their mistake and conclude that either (1, 3)GDWN is not nice or else it is nice
and the dominant vectors are {(0, 1), (1, 0)}. Of course the belief is the latter possibility.

3.2.4 Further Extensions

In [DSS19], the following game is analyzed. Consider the points of Z × Z in a square spiral, beginning
(0, 0), (1, 0), (1, 1), (0, 1), and so on. If the point you are considering sees no previously placed queen, place
a queen there. It was proven that the queens end up a constant distance from two lines through the origin
of slopes ψ and −1/ψ, where

ψ =
1 +

3
√
19− 3

√
33 +

3
√
19 + 3

√
33

3

is the Tribonacci constant with minimal polynomial x3−x2−x−1. We can obtain this constant as the solution
to a slightly modified system of equations. In particular, every row, column, diagonal, and antidiagonal of
Z×Z ends up with a queen such that the blocks for each of them grows linearly up to a constant variation,
so this game is cordial under an appropriate modification of that definition. This implies, in the spirit of
Theorem 1, that the P -positions should lie a constant distance four rays based at the origin, with uniform
density on these rays.

The system for computing the slopes of these rays is

1 = δ1 + δ4

1 = δ2 + δ3

1 =
δ1
s1

+
δ2
−s2

1 =
δ3
s3

+
δ4
−s4

1 =
δ1

s1 − 1
+

δ2
−s2 + 1

1 =
δ3

s3 − 1
+

δ4
−s4 + 1

1 =
δ1

s1 + 1
+

δ4
s4 + 1

1 =
δ2

s2 + 1
+

δ3
s3 + 1

.

Exploiting symmetry we find s1 = s3 and s2 = s4, and the same for the δ’s. So the system is

1 = δ1 + δ2

1 =
δ1
s1

+
δ2
−s2

1 =
δ1

s1 − 1
+

δ2
−s2 + 1

1 =
δ1

s1 + 1
+

δ2
s2 + 1

.
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From the first two equations find δ1 = s1(1+s2)
s1+s2

and δ2 = s2(1−s1)
s1+s2

. Then clearing denominators in the last
two equations gives

0 = s21 + s22 − 2s1

0 = 2s21s2 + s21 + s22.

A Gröbner basis is
{s1 − 4s52 + 2s42 − s32 − 8s22, s

6
2 + 2s32 + s22}

so one finds the minimal polynomials of s1 and s2 are

x3 − x2 − x− 1 and x3 − x2 + x+ 1,

respectively, and s1 and s2 are ψ and −1/ψ as expected. Actually, the system is simple enough that one
does not even need to appeal to Gröbner bases to find these minimal polynomials.

The final example we look at is k-Wythoff Nim, first considered in [Hol68], in which the legal moves are
to remove any number of stones from either pile or a stones from one pile and b from the other provided

|a− b| ≤ k.

The case k = 0 is Wythoff Nim. It is no longer the case that every diagonal has a P -position, but instead
now every (k + 1)st diagonal has a P -position. So the appropriate system is

1 = δ1 + δ2

1 =
δ1
s1

+
δ2
s2

1

k + 1
=

δ1
1− s1

1

k + 1
=

δ1
s2 − 1

.

Notice that this is the same system as for GDNk, but with k replaced by 1/(k+1). Hence s1 = −k−1+
√
k2+2k+5
2

and s2 = k+1+
√
k2+2k+5
2 . This is known to be correct, and in fact the P -positions are given by the Beatty

sequence

(

⌊
1− k +

√
k2 + 2k + 5

2
n

⌋
,

⌊
3 + k +

√
k2 + 2k + 5

2
n

⌋
)

for each n ≥ 0, and the reflection of these points over y = x [Hol68].

3.3 Notes on Conjecture 1

First let us prove the “only if” direction of Conjecture 1. This is basically a direct consequence of part (4)
of Theorem 1 (along with the fact that Wythoff Nim is nice so that Theorem 1 applies).

Theorem 3. If (p, q) is a splitting pair then limn→∞
yn

xn
is not equal to ϕ, where {(xn, yn)} are the P -

positions of (p, q)GDWN such that x1 ≤ x2 ≤ . . . and yn > xn.

Proof. Let s1 = 1/ϕ and s2 = ϕ be the slopes for Wythoff Nim (i.e. ∅GDN1) and δ1 = 2−ϕ and δ2 = ϕ− 1
the associated densities. If (p, q) with say q > p is a P -position of Wythoff Nim, then p = ⌊nϕ⌋ and q = ⌊nϕ2⌋
for some n. Then q − p = n (ϕ2 = ϕ+ 1) so q/p = 1 + n/⌊nϕ⌋ > 1 + 1/ϕ = ϕ. Let k be the smallest integer
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so that k/ϕ > n. Then p = k − 1 and q = k − 1 + n, so∑
s∈S

s<q/p

δs
q − ps

=
δ1

q − ps1
+

δ2
q − ps2

=
ϕ− 1

(k − 1 + n)ϕ− (k − 1)
+

ϕ− 1

(k − 1 + n)− (k − 1)ϕ

>
ϕ− 1

(k − 1 + k/ϕ)ϕ− (k − 1)
+

ϕ− 1

(k − 1 + k/ϕ)− (k − 1)ϕ

=
ϕ− 1

kϕ− (ϕ− 1)
+ 1

> 1,

so the P positions of (p, q)GDWN are not o(n) from lines of slopes ϕ and 1/ϕ.
If (p− 1, q − 1) is a P -position of Wythoff Nim, then p = ⌊nϕ⌋+ 1 and q = ⌊nϕ2⌋+ 1 for some n. Then

q/p < ϕ. Letting k be the smallest integer so that k/ϕ > n as before, we have p = k and q = k + n, so∑
s∈S

s>q/p

δs
ps− q

=
δ2

ps2 − q

=
ϕ− 1

kϕ− (k + n)

>
ϕ− 1

kϕ− (k + (k − 1)/ϕ)

= 1,

so the P positions of (p, q)GDWN are not o(n) from lines of slopes ϕ and 1/ϕ.
For (p, q) with q < p, then (q, p) is one of the moves added when going from Wythoff Nim to (p, q)GDWN,

so the same analysis holds as above, just swapping p and q.

It is really just a coincidence due to simplicity of the characterization of P -positions of Wythoff Nim that
the splitting vectors of Wythoff Nim are related so closely to the P -positions of Wythoff Nim. For instance,
the splitting vectors of GDNk (assuming this game is nice) may be calculated in a manner similar to the
proof above to be {

(n,m), (m,n) | m > n, |nsk −m| < sk
sk + 1

}
where sk = 1+

√
1+4k2

2k . The condition that (a, b) is splitting is basically that b/a is extremely close to some
s ∈ S so that one of the terms in one of the possible rational expressions is large, which is similar to the
characterization that the P -positions are close to lying on lines whose slopes are in S, though in general the
splitting vectors appear much closer to these lines than the P -positions and they are more numerous. See
Figure 4 for a direct comparison in a few cases. Are there other games so that the P -positions and splitting
vectors are closely related?

4 Cruel Games and Intransitive Dice

Say a variant is cruel if it is not nice. Are there cruel GDNs? Although none are proven, it appears there
are many examples, the simplest of which is probably (3, 5)GDWN, shown in Figure 5. If (3, 5)GDWN were
nice, the slopes of the lines that the P -positions lie o(n) distance from would be roughly 0.56813, 0.65021,
1.53796, and 1.76014, but the P -positions appear to be Ω(n) distance from these lines (though they still lie
fairly close to them). See the Appendix in [Lar12] for many other interesting examples of suspected cruel
games.

We make some conjectures for how one might analyze these games. Our ideas are loosely similar to the
main idea in [Sim21], namely to consider not the specific placements of P -positions but instead a distribution
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Figure 4: The P -positions (large black dots) and splitting vectors (small red dots) for GDN2 (left), (1, 2)GDN
(middle) and (1, 2)GDWN (right).

Figure 5: (3, 5)GDWN. On the left are the first 100000 P -positions. On the right, we plot y/x against x.
Note the apparent quasiperiodicity and lack of convergence, unlike in Figure 3 for example. We estimate the
quasiperiod σ to be roughly 0.68.

of placements of P -positions (in [Sim21], “P -positions” are instead queen placements on an n×n chessboard,
but there is the connection due to Section 2).

4.1 First Pass

Instead of a finite set of slopes S and densities ∆, let µ be a Borel measure on [0,∞) so that the number
of P -positions (x, y) with s1 < |y/x| < s2 is asymptotically µ((s1, s2)). Recall from the proof of part (4) of
Theorem 1 that we had ∑

s∈S
s>d/c

δs
cs− d

≤ 1 and
∑
s∈S

s<d/c

δs
d− cs

≤ 1

17



for all (c, d) ∈ D̃. Then we can view determining S and ∆ as a kind of optimization problem, to find the
“lowest” choice of S and ∆ such that these inequalities are satisfied. Intuitively, lowest should mean roughly
that if one draws an s ∈ S at random with weight δs, the chosen number will be usually be smaller than for
any other S and ∆ satisfying the inequalities. That is, we wish for∑

si∈S

∑
sj∈S′

sgn(si − sj)δsiδ
′
sj > 0

whenever (S′,∆′) is another possible set of slopes and densities satisfies the necessary inequalities. For
instance, the (S,∆) for (1, 2)GDWN computed in Section 3.2 satisfies the inequalities for Wythoff Nim (they
are a subset of the inequalities for (1, 2)GDWN), but one can compute that the solution for Wythoff Nim
“beats” the solution for (1, 2)GDWN at about 50.7% of columns (corresponding to a value ≈ 0.014 in the
double sum above).

The appropriate condition on µ is then to demand that∫ ∞

d/c

1

cs− d
dM(s) ≤ 1 and

∫ d/c

0

1

d− ac
dM(s) ≤ 1

for all (c, d) ∈ D̃, where M is such that µ is the Lebesgue-Stieltjes measure of M . For simplicity we will
ignore the complications due to measure theory from now on and just write∫ ∞

d/c

µ(s)

cs− d
ds ≤ 1 and

∫ d/c

0

µ(s)

d− ac
ds ≤ 1

instead. Call a µ valid if it satisfies these inequalities. We should prefer µ to µ′ if∫ ∞

0

∫ ∞

0

sgn(s1 − s2)µ(s1)µ
′(s2) ds2, s1 > 0.

Unfortunately (perhaps), the preference relation we have defined is not transitive! Indeed, it is exactly
the reverse of the relation that gives rise to intransitive dice. However, there is actually a (weak) maximum
value under this relation:

Theorem 4. There is a valid µ∗ such that for all other valid µ,∫ ∞

0

∫ ∞

0

sgn(s1 − s2)µ
∗(s1)µ(s2) ds2, s1 ≥ 0.

Proof. First we note in any DGDNk that there is an upper bound for y/x where (x, y) is a P -position.
Notice that each P -position to the left of (x, y) can eliminate at most |D|+2 possible positions from the xth
column (one for each (a, b) ∈ D, plus one for (k, k) moves and one for (1, 0) moves), so y ≤ (|D| + 2)x + 1.
Thus instead of considering measures on [0,∞) we can consider measures on [0, |D|+ 3], say.

Then consider the following game: Alice and Bob simultaneously come up with valid µA and µB , then
interpret their µ’s as a probability measures on [0, |D|+ 3] and draw sA and sB according to this measure.
Then the winner is whoever drew the smaller number. Note that in the appropriate topology the set of
valid µ is compact; indeed, the set of µ satisfying just one of the necessary inequalities is compact (this is,
however, why we needed to restrict to [0, |D|+3]), so their intersection, that is the set of valid µ, is compact.
Thus there is a mixed-strategy Nash equilibrium for this game, which is a probability measure X on the
space of valid µ. Using this we will construct a pure-strategy Nash equilibrium, which is our µ∗.

Note that the set of µ satisfying just one of the necessary inequalities is also convex, which follows by
linearity of the integral and the fact that 1/(as− b) and 1/(b−as) are monotone in s on the relevant ranges.
Thus the set of valid µ is convex, so µ∗ given by

µ∗(U) =

∫
valid µ

µ(U) dY (µ)

is valid, where Y is such that X is the Lebesgue-Stieltjes measure of Y . The strategy “Always choose µ∗” at
least ties with X since the probability the number chosen by both strategies lies in U ⊂ [0, |D|+ 3] is equal.
Thus µ∗ is a pure-strategy equilibrium for this game, which implies the theorem statement.
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4.2 Second Pass

Unfortunately, in cruel games the P -positions appear that they will not approach this magical µ∗. In fact
they will not approach any measure, for they exhibit some kind of quasiperiodicity. In particular, it looks
like one can partition [0,∞) ∩ Z into contiguous sets Xi such that |Xi+1| ≥ r|Xi| for some r > 1 such that
there is a U and α < β such that the lim inf as t → ∞ of the number of P -positions with y/x ∈ U and
x ∈ X2t is at least β, but the lim sup of the number of P -positions with y/x ∈ U and x ∈ X2t+1 is at most
α.

Our second pass remedies this deficiency. Consider µ a measure on [0, 1] × [0,∞), with the following
properties:

• µ((a, b)× [0,∞)) = b− a for 0 ≤ a ≤ b ≤ 1.

• For each (c, d) ∈ D̃ other than (0, 1), µ({(x, dx/c) | a ≤ x ≤ b}) ≤ c(b− a) for all a, b.

Call µ quasiperiodic if there is a 0 < σ < 1 such that µ(U) = σµ(σU) for all U , where σU = {(σx, σy) |
(x, y) ∈ U}. For quasiperiodic µ, µ′ say µ ∼ µ′ if there is are τ, τ ′ such that µ(U) = τµ′(τU) and µ′(U) =
τ ′µ(τ ′U) for all U . One can verify this is an equivalence relation. Denote by F(µ) the equivalence class of µ
under ∼. Notice for any µ that F(µ) is compact. Indeed, one can define a homeomorphism (in the suitable
topology) from the elements of F(µ) to a circle; the µ′ at angle θ has τ = σθ/(2π) relating it to µ at angle 0.
Then we make the following (imprecise) conjecture:

Conjecture 4. For any DGDNk, there exists an equivalence class F such that the P -positions with x-
coordinate less than N approach F as N → ∞.

We clarify the meaning of “approach.” Note that the P -positions with x-coordinate less than N give a
µN by placing weight N at the square with side length 1/N and upper-right corner (x/N, y/N), with (x, y)
a P -position. One possible version of this conjecture is that for any U , the infimum of |µN (U)− µ′(U)| for
µ′ ∈ F approaches 0 as N → ∞.

Intuitively, it is precisely the intransitivity of the preference relation that leads to quasiperiodicity. In
particular, we suspect for the F in the conjecture statement that for sufficiently small ε, the element of F
at angle θ+ ε is preferred to the element at angle θ, where preference is defined by looking at the restriction
of the µ’s to {1} × [0,∞). In other words, the elements of F form a continuous cycle of intransitive dice.

5 The Case of Greedy Queens

In [DSS19] it is conjectured that the P -positions of (1,−1)GDN lie at a bounded distance from lines of slopes
ϕ and 1/ϕ, the same as in Wythoff Nim. It suffices to prove that (1,−1)GDN is cordial. We sketch the first
half of a proof of this. The technique is a variation of the string substitution technique used in [LW12].

There are four sets of lines that are important in the analysis of (1,−1)GDN, namely the rows Ry =
{(x, y) | x ∈ Z} for each y ≥ 0, the columns Cx = {(x, y) | y ∈ Z} for each x ≥ 0, the diagonals
Dk = {(z, k + z) | z ∈ Z} for k ∈ Z, and the antidiagonals Ak = {(w, k − w) | w ∈ Z} for k ≥ 0.

Realize that if a P -position is placed above the line y = x, then its position is entirely determined by
the last P -position above the line y = x. In particular, if that P -position was (a, b), the new P -position will
be (a + k, b + k + 1) for some k ≥ 1. This is because (inductively) all diagonals Dk from k = 0 to b − a
already have a P -position, so the lowest available location for the new P -position is (a+ k, b+ k + 1), and
(inductively) this sees no other P -positions. Thus the “hard part” in determining the P -position placement
is determining:

(1) when a P -position lies above or below the line y = x, and

(2) if it lies below y = x, where it is placed.

The key is then to try to find the smallest amount of information that can determine these two things
at any point in time, and determining how that information changes after a P -position is placed. First, call
a P -position near if it lies below y = x and far otherwise. Then define the following:
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• n: The current column being considered.

• r: The smallest y for which Ry is not covered by a P -position.

• d: The smallest k for which Dk is not covered by a P -position (this is negative in general).

• u: The largest k for which Dk is not covered by a P -position.

• rf : From y = r to n + d, the rows Ry that are covered by a far P -position. This set is called the far
row pattern.

• rn: From y = r to ∞, the Ry covered by a near P -position. This is the near row pattern.

• dn: From k = −∞ to d, the Dk covered by a (near) P -position. This is the diagonal pattern.

• af : From k = n+ r to 2n+ d, the Ak covered by a far P -position. This is the far antidiagonal pattern.

• an: From k = n+ r to ∞, the Ak covered by a near P -position. This is the near antidiagonal pattern.

We regard these as functions of n, so we may write r(n), rf (n), etc.
First we prove:

Lemma 1. (n, r, d, u, rf , rn, dn, af , an) are sufficient to determine the next P -position.

Proof. From the definition of r, all of the positions (n, 0) through (n, r− 1) see a P -position along the same
row. From d and u, all the positions (n, n + d + 1) through (n, n + u − 1) see a P -position along the same
diagonal. By an easy inductive argument, (n, n+ u) sees no P -position. Thus the P -position in column n is
either one of the positions (n, n+ r) through (n, n+ d) or it is (n, n+u). Then clearly (rf , rn, dn, af , an) are
sufficient to determine which (if any) of the positions (n, n+ r) through (n, n+ d) see a P -position, noting
for the case of diagonals that no far P -position lies on the same diagonal as any of the positions (n, n + r)
through (n, n+ d). The new P -position is placed at the lowest of these positions that do not see an earlier
P -position, or (n, n+ u) if all of them see an earlier P -position.

The near and far patterns are separated because, for example, the pair (rf , rn) behaves more predictably
than rf ∪ rn after a P -position is determined, since the near patterns are determined by the recent near
P -positions while the far patterns are determined by the far P -positions from long ago.

We are really more interested in the location of the next P -position relative to n, r, and u, rather than
its absolute location. So we define:

• w = n+ d− r, the window size.

• r′f = {y − r | y ∈ rf},

• etc. (Each of the other patterns just get appopriately shifted by multiples of n and r.)

Call (w, r′f , r
′
n, d

′
n, a

′
f , a

′
n) the reduced information tuple, or just tuple. Along with n, r, and u, the tuple

determines the P -position in column n. But after this placement, what is the next tuple? This is not
determined in general, since as n increments, w increments (up to changes in d and r), so the window
determining rf grows by one and the window for af grows by two. Whether or not the new possible rows
and antidiagonals are covered by far P -positions depends on the P -position placement from a long time
ago. However, there are only a few possibilities in general, since adjacent far P -positions lie two rows or
three antidiagonals apart at minimum, and (conjecturally) some constant distance apart at maximum, so
for instance if w ∈ r′f (n) then certainly w + 1 ̸∈ r′f (n+ 1).

Thus we form a (infinite) directed graph whose vertices are the possible tuples and edges the possible
transitions between them; what we have remarked is that the maximum outdegree is not too large. Label
the edges with (R,A), where R and A are binary strings that describe the far P -positions that are necessary
in order for this edge to be the transition. For instance, the edge

(1,∅,∅,∅, {1},∅) → (2, {2},∅,∅,∅,∅)
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gets label (1, 00).
Choose your favorite tuple (a good choice is the tuple that occurs most often empirically, which is

(0,∅,∅,∅,∅,∅)), and for each closed walk based at that tuple, create a rule of the form (R,A) → (R′, A′),
where R and A are the concatenation of the R and A for each edge in the walk and R′ and A′ describe the
new P -position placements. If a vertex on the walk leads to a P -position being placed below y = x, then
append 0 to R′ and 00 to A′. If it leads to a P -position being placed above y = x, then append 10 to R′

and 100 to A′.
Then the process for computing the P -positions (actually just whether each P -position is near or far,

but that will be good enough) is that one starts with a pair of strings describing the P -positions from some
point onwards in terms of rows and antidiagonals, then read both strings and find the earliest rule (in some
order) that matches their prefixes. Pop those prefixes off of the front and add R′ and A′ to the end. If only
finitely many rules are ever used, we can conclude that (1,−1)GDN is cordial.

In the Appendix we provide what we believe to be the minimal subgraph and set of rules. We provide
the count of the number of times each vertex is visited and each rule is used from the P -positions in
the first 107 columns. Proving that no other tuples and rules appear appears very difficult, or at the
very least extremely tedious. In [LW12], a similar string rewriting system is found for Maharaja Nim
(GDN+(1, 2)(2, 1)), amounting to 14 rules, though it is suspected only 9 rules are actually ever used. The
longest rule read a prefix of length 9. Their proof that this ruleset is sufficient eliminated 11 substrings from
ever appearing and is the better part of a page of reasoning. In our case we have 73 rules that definitely
appear, the longest of which reads 16 characters from one string and 42 from the other, so we suspect a proof
similar to the one in [LW12] would take several pages at minimum, but it could end up much longer and
harder due to complications arising from operating on two strings simultaneously and due to the increase in
the maximum rule length.

In principle, we expect a similar string-rewriting method would produce a proof of cordiality for all cordial
games. We call such a method a multistring rewriting system, with a multistring being a tuple of strings.
This consists of a starting multistring σ along with a sequence of rules (aka dictionary) D, where at each
step one looks along the sequence until one matches the prefixes of every string in the current multistring,
then pops off those prefixes and appends the associated suffixes. Each rule also determines the placement of
some P -positions. In other words:

Conjecture 5. For all cordial games, there is a finite multistring rewriting system that determines the
P -position placement.

Also, the number of strings being operated on should equal to the number of infinite families of moves
minus 1. For instance in Maharaja Nim there are two infinite families of moves, namely removing any number
of stones from the first pile or any number from the second pile, and in (1,−1)GDN there is a third, adding
the ability to remove any number of stones from the first pile and add the same number to the second.

6 Concluding Remarks

One may regard parts (3) and (4) of Theorem 1 as sophisticated density arguments. We have proven one
(admittedly strong) condition on a game in order for these density arguments to apply. We demonstrate
how one can solve this system of equations to determine minimal polynomials for the (algebraic) slopes of
lines that the P -positions lie near. In cases with more lines it may be impractical to find these minimal
polynomials, but numerical solutions can also be found. Using this, one can come up with an endless number
of precise conjectures about the asymptotic behavior of a wide variety of variants of Wythoff Nim.

As for cases where Theorem 1 does not seem to apply, we describe a potential avenue for analysis by
making the problem continuous in a similar vein to [Sim21]. However, finding (or even approximating) a
solution seems extremely difficult.

As for proving the cordiality of certain games, we describe an advanced string rewriting technique in a
similar vein to [LW12]. The key insight is to operate on multiple strings simultaneously, though this makes
proving that the multistring rewriting system covers all cases more difficult. We suspect for all cordial games
that a similar technique could be used to prove cordiality, though much more research is required into this
area.
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A Greedy Queens Digraph and Multistring Rewriting

As described in Section 5, one can construct a directed graph whose vertices are possible tuples and whose
edges represent transitions that can occur based on far P -position placements from many columns earlier.
Then one can construct a multistring rewriting system by looking at closed walks in this digraph based at
a particular tuple. In general this graph and multistring rewriting system are infinite, but it is conjectured
that only finitely many vertices in the graph and rewriting rules ever occur in practice, which would imply
the cordiality of (1,−1)GDN.

The digraph is given in Tables A1 and A2. Notice that many vertices have outdegree 1, indicating that
the window did not grow (enough) in order for new far P -positions to affect the tuple.

The multistring rewriting system is given in Table A3. The interpretation is that a 1 is a P -position
above the line y = x and a 0 is a P -position on or below y = x. A possible seed multistring is

(01010001010101, 010010000001001001001000000100001000),

where at each stage, one constructs the new multistring by repeatedly matching prefixes according to the
table of rules, appending the suffixes onto the multistring (0, 0), until reaching the end of the current string.
For instance, the seed multistring matches prefixes

(0101, 0100100000), (000101, 0100100100100000), (0101, 0100001000)

in order, meaning the next multistring is

(0101000101010100010010010101010001010,

01001000000100100100100000010000100001001001001000000100100).

One just needs that the seed multistring is long enough that the multistring grows enough to match more
prefixes after one step.

Notice that the second prefix is irrelevant to determining the suffixes in all cases except when the first
prefix is 00010101. This fact could potentially be used to greatly simplify a proof that this multistring
rewriting system covers all possible cases.

23



Vertex w r′f r′n d′n a′f a′n Outneighbors Count

1 0 ∅ ∅ ∅ ∅ ∅ 2, 4 1571734
2 1 ∅ ∅ ∅ ∅ ∅ 1, 3, 5, 19 1571733
3 −1 ∅ ∅ ∅ ∅ ∅ 1 1412793
4 1 ∅ ∅ ∅ {0} ∅ 6, 7 978874
5 −2 ∅ ∅ ∅ ∅ ∅ 3 629763
6 2 ∅ ∅ {−1} ∅ ∅ 8, 13, 16 505678
7 2 ∅ ∅ {−2} ∅ ∅ 2 473195
8 2 ∅ {1} ∅ ∅ {1} 11, 18 287309
9 0 ∅ ∅ {−2} ∅ ∅ 2 243356

10 2 ∅ ∅ {−3} ∅ ∅ 9 189179
11 1 ∅ {1} ∅ ∅ {0} 10, 27, 33, 34 186808
12 3 ∅ {2} ∅ ∅ {2} 2, 11, 24 184269
13 2 {1} ∅ {0} {0} ∅ 14, 15 170648
14 3 ∅ ∅ {−2,−1} ∅ ∅ 8, 17, 20, 29 160700
15 3 ∅ ∅ {−2,−1} {0} ∅ 8, 17 160011
16 2 {1} ∅ {0} ∅ ∅ 14 150063
17 2 {1} ∅ {−1, 0} ∅ ∅ 12, 21 125978
18 0 ∅ {1} ∅ ∅ {0} 2 102342
19 −3 ∅ ∅ ∅ ∅ ∅ 5 87481
20 2 {1} ∅ {−1, 0} {1} ∅ 12 62031
21 3 {1} ∅ {0, 1} {2} ∅ 23, 49 59625
22 1 ∅ {2} ∅ ∅ {0} 10, 39, 43 56962
23 4 {1} ∅ {−2,−1, 0} ∅ ∅ 12 55636
24 0 ∅ {2} ∅ ∅ {1} 22 55636
25 −1 ∅ ∅ {−3} ∅ ∅ 9 54003
26 1 ∅ ∅ {−4} ∅ ∅ 25 40345
27 2 ∅ {1} ∅ {0} ∅ 28 37766
28 3 ∅ ∅ {−3} ∅ ∅ 26, 65, 69 37766
29 2 ∅ ∅ {−1, 0} {1} ∅ 12, 30 30360
30 3 {2} ∅ {0, 1} {0} ∅ 32, 37 30111
31 4 ∅ {3} ∅ ∅ {3} 11, 35, 41 20506
32 4 {1} ∅ {−1, 0, 1} ∅ ∅ 31, 36 16219
33 0 ∅ {1} ∅ ∅ ∅ 2 15707
34 −1 ∅ {1} ∅ ∅ ∅ 33 15458
35 0 ∅ {3} ∅ ∅ {2} 22, 38 15192
36 4 {1, 3} ∅ {0, 1, 2} {2} ∅ 42, 62 14627
37 4 {1} ∅ {−1, 0, 1} {1} ∅ 45, 48 13892
38 1 ∅ {1} ∅ ∅ ∅ 34 13866
39 2 ∅ ∅ {−4} ∅ ∅ 25 13658
40 5 ∅ {4} ∅ ∅ {4} 41, 53 13594
41 1 ∅ {2} ∅ ∅ {1} 44, 61 13508
42 5 {1} ∅ {−2,−1, 0, 1} {2} ∅ 31, 47 12840
43 0 ∅ {2} ∅ ∅ ∅ 2 11112
44 −1 ∅ {2} ∅ ∅ {0} 43 9786
45 4 {1, 3} ∅ {0, 1, 2} {0, 3} ∅ 46 8758
46 5 {1} ∅ {−2,−1, 0, 1} {0} ∅ 31 8758
47 4 {1, 3} ∅ {−1, 0, 1, 2} {1} ∅ 40 7732
48 4 {1} ∅ {0, 1, 2} {0, 3} ∅ 51, 64 5134
49 4 ∅ ∅ {−2,−1, 0} ∅ ∅ 50 3989
50 3 {2} ∅ {−1, 0, 1} {1} ∅ 31, 67 3989

Table A1: Tuple digraph for (1,−1)GDN, part 1. Part 2 is Table A2.
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Vertex w r′f r′n d′n a′f a′n Outneighbors Count

51 5 ∅ ∅ {−2,−1, 0, 1} {0} ∅ 52 3808
52 4 {3} ∅ {−1, 0, 1, 2} ∅ ∅ 40 3808
53 1 ∅ {3} ∅ ∅ {2} 54 3808
54 0 ∅ {3} ∅ ∅ {1} 55 3808
55 1 ∅ {3} ∅ ∅ {0} 56 3808
56 2 ∅ {1, 3} ∅ {0} {1} 57 3808
57 2 ∅ {1, 3} ∅ ∅ {0} 58 3808
58 3 ∅ ∅ {−5} ∅ ∅ 59 3808
59 −1 ∅ ∅ {−4} ∅ ∅ 60 3808
60 0 ∅ ∅ {−3} ∅ ∅ 26 3808
61 0 ∅ {2} ∅ ∅ {0} 2 3722
62 5 {1} ∅ {−2,−1, 0, 1} ∅ ∅ 63 1787
63 4 {1, 3} ∅ {−1, 0, 1, 2} {3} ∅ 40 1787
64 5 {2} ∅ {−2,−1, 0, 1} {0} ∅ 31 1326
65 1 ∅ ∅ {−2} {0} ∅ 66 1055
66 2 ∅ ∅ {−3,−2} ∅ ∅ 2 1055
67 4 {2} ∅ {0, 1, 2} {0, 3} ∅ 68 267
68 5 {1, 3} ∅ {−1, 0, 1, 2} {1} ∅ 40 267
69 1 ∅ ∅ {−3} ∅ ∅ 9 174

Table A2: Tuple digraph for (1,−1)GDN, part 2. Part 1 is Table A1.
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Prefix 1 Prefix 2 Suffix 1 Suffix 2 Count
0101 0100100001 1010001010 1001000000100100 25742
0101 0100100000 1010001010 1001000000100100 64050
0101 0100001001 1010001010 1001000000100100 10741
0101 0100001000 1010001010 1001000000100100 71766
0101 0100000010 1010001010 1001000000100100 53427
010 01001000 10100010 1001000000100 159711
010 01000010 10100010 1001000000100 78945
010 01000000 10100010 1001000000100 8813
01 10010 10010 10000100 86230
01 10000 10010 10000100 7232
01 00100 10010 10000100 407
01 00010 10010 10000100 206340
01 00001 10010 10000100 59186
01 00000 10010 10000100 74524
00101010101 0100001000010010010000100000 1010010010100010100101001010 100100001000010010000001001000010010000100100 4560
0010101010 01000010000100100100000010 10100100101000101001010010 100100001000010010000001001000010010000100 9098
0010101001 01001000000100100001001000 10100100101000101001001010 100100001000010010000001001000010000100100 454
0010101001 01001000000100100001000010 10100100101000101001001010 100100001000010010000001001000010000100100 7995
0010101001 01000010000100100100001001 10100100101000101001001010 100100001000010010000001001000010000100100 10391
0010101001 01000010000100100100001000 10100100101000101001001010 100100001000010010000001001000010000100100 5566
001010100 010010000001001000010010 101001001010001010010010 100100001000010010000001001000010000100 1258
001010100 010000100001001001000010 101001001010001010010010 100100001000010010000001001000010000100 16314
0010101 010010010000100001 101001001000101010 10010000100001000000100100100 4832
0010101 010010010000100000 101001001000101010 10010000100001000000100100100 19122
0010101 010010010000001000 101001001000101010 10010000100001000000100100100 12215
0010101 010000100100100001 101001001000101010 10010000100001000000100100100 11714
0010101 010000100100100000 101001001000101010 10010000100001000000100100100 32402
0010101 010000100000010010 101001001000101010 10010000100001000000100100100 522
001010010101 0100001000010010010010000001000 1010010010100101000010100101010 10010000100001001000010010000000010010000100100100 267
0010100101 01000010000100100001001001 10100100101001000100101010 100100001000010010000100000010000100100100 2239
001010010 010000100001001000010010 101001001010010001001010 100100001000010010000100000010000100100 1483
001010 0100100100000010 1010010010001010 10010000100001000000100100 29508
001010 0100100001000000 1010010010001010 10010000100001000000100100 930
001010 0100001001001000 1010010010001010 10010000100001000000100100 16985
001010 0100001000000100 1010010010001010 10010000100001000000100100 154
001001010101 0100001001000010000100100100000 1010010010100100100010100101010 10010000100001001000010000100000010010000100100100 1787
00100101010 01000010010000100100100000010 10100100101001001000101001010 10010000100001001000010000100000010010000100100 7732
00100101001 01000010010010010000100001000 10100100101001000100101001010 10010000100001001000010000001000010010000100100 567
00100101001 01000010010010010000001001001 10100100101001000100101001010 10010000100001001000010000001000010010000100100 2139
00100101001 01000010010000100100100001000 10100100101001000100101001010 10010000100001001000010000001000010010000100100 1461
0010010100 010000100100100100001000010 101001001010010001001010010 10010000100001001000010000001000010010000100 5908
0010010100 010000100100100100000010010 101001001010010001001010010 10010000100001001000010000001000010010000100 144
0010010100 010000100100001001001000000 101001001010010001001010010 10010000100001001000010000001000010010000100 3647
00100100101 01000010010010010000001001001 10100100101001000100100101010 10010000100001001000010000001000010000100100100 1326
001001001 010000100100001001000010 101001001010000101001010 100100001000010010000000010010000100100 1234
0010010001010101 010000100100100100000010010010010000100001 101001001010010010001010010010100101001010 10010000100001001000010000100000010010000100001001000010010000100100 1357
0010010001010101 010000100100100100000010010010010000100000 101001001010010010001010010010100101001010 10010000100001001000010000100000010010000100001001000010010000100100 302
0010010001010101 010000100100100100000010010010010000001000 101001001010010010001010010010100101001010 10010000100001001000010000100000010010000100001001000010010000100100 2149
00100100 0100001001000010010010 1010010010100001010010 100100001000010010000000010010000100 358
001001 0100100100001001 1010010001001010 10010000100000010000100100 13793
001001 0100100100001000 1010010001001010 10010000100000010000100100 19404
001001 0100100100000010 1010010001001010 10010000100000010000100100 40187
001001 0100001000010010 1010010001001010 10010000100000010000100100 8008
0010001 0100001001001000010 1010010010001001010 1001000010000100000010000100100 249
00100 01001001000010 10100100010010 10010000100000010000100 17609
00100 01001001000000 10100100010010 10010000100000010000100 3341
00010101 010000100100100100001 101000101000101001010 1001000000100100000010010000100100 2629
00010101 010000100100100100000 101000101000101001010 1001000000100100000010010000100100 22759
00010101 010000100100001001001 101000101000101001010 1001000000100100000010010000100100 4109
00010101 010000100001001001001 101000101001000101010 1001000000100100001000000100100100 809
00010101 010000100001001000010 101000101001000101010 1001000000100100001000000100100100 246
0001010 0100001001001001000 1010001010001010010 1001000000100100000010010000100 4211
0001010 0100001001000010010 1010001010001010010 1001000000100100000010010000100 2829
000101 0100100100100001 1010001001001010 10010000001000010000100100 15232
000101 0100100100100000 1010001001001010 10010000001000010000100100 29000
000101 0100100001001001 1010001001001010 10010000001000010000100100 57205
000101 0100100001000010 1010001001001010 10010000001000010000100100 8840
0001001 0100001001001001001 1010001010001001010 1001000000100100000010000100100 174
00010 01001001001000 10100010010010 10010000001000010000100 35953
00010 01001000010010 10100010010010 10010000001000010000100 92
00010 01001000010000 10100010010010 10010000001000010000100 879
0 100 100 10000 567
0 000 100 10000 158374

Table A3: Multistring rewriting system for (1,−1)GDN.
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